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EXECUTIVE SUMMARY

The prediction of electromagnetic field strengths at large distances from
a radiating antenna is important to designers and users of communications
systems. Such field strengths can be greatly influenced by the variation of
the modified atmospheric refractivity M with height z. If the gradient of M
is negative over a range of z, an extreme enhancement in field strength may be
realized at large distances from the source. The layer of the atmosphere
responsible for the enhancement is known as a duct. When the ground is the
lower boundary of the ducting layer, the duct is called a surface, or ground-
based, duct; otherwise, it is denoted as an elevated duct. One common type of
surface duct is found over the ocean and is known as an evaporation duct.
Since the propagation of electromagnetic waves is sensitive to the phase of
plane wave spectral components, which can be greatly influenced by the form of
the reflecting ground, ground roughness is expected to have an important

effect on the field strengths.

As a first step toward developing a mathematical model for duct
propagation over a general rough earth, the problem considered herein is of a
perfectly conducting periodiec ground with a small roughness amplitude on the
lower boundary of a duct. Specifically, the wave equation is developed and
solved for the two-dimensional case of a long horizontal source. This method
is applied to the problem of a long horizontal source radiating over a
sinusoidally shaped, perfectly conducting ground within a surface duct
environment. The eigenvalues of the "rough-walled waveguide" are found by
expanding a characteristic determinant about 2zero roughness amplitude to
obtain an "equivalent zero mode matrix". It is shown that for the specular
component of the reflection, the problem can be considered in terms of an

effective reflection coefficient that accounts for re-scattering of energy

back into the specular direction. | Accession For yd
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ECAC-TR-88-001

An eigenvalue perturbation method is developed using the equivalent
matrix that permits the calculation of eigenvalues for the rough-earth case
using those of the smooth-earth case. It is shown that the eigenvalue
perturbation scheme is as accurate as directly obtaining the eigenvalues from
the equivalent matrix but requires much less computation time. The
relationship between the two methods has been detailed, and the eigenvalue
perturbations, as well as roughness loss rates, have been shown to be
consistent with results obtained using a rough-earth form of the fundamental

waveguide mode equation.

The methods documented in this report are a first step toward developing
a mathematical model of propagation under the given conditions. They can be
considered a research model applicable to a limited set of circumstances.

Further work is needed to extend the model and make it more widely applicable.
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PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC), a Department of
Defense facility, was established to provide advice and assistance on
electromagnetic compatibility matters to the Secretary of Defense, the Joint
Chiefs of Staff, the military departments, and other DoD components. The
Center, located at North Severn, Annapolis, Maryland 21402, is under the
poliecy control of the Assistant Secretary of Defense for Communication,
Command, Control, and Intelligence, and the Chairman, Joint Chiefs of Staff,
or their designees, who jointly provide policy guidance, assign projects, and
establish priorities. ECAC functions under the executive direction of the
Secretary of the Air Force, and the management and technical direction of the
Center are provided by military and civil service personnel. The technical
support function is provided through an Air Force-sponsored contract with the
IIT Research Institute (IITRI).

To the extent possible, all abbreviations and symbols used in this report
are taken from the American National Standards Instutute, Inc., American
National Standard ANSI (Y10.19) 1969 Letter Symbols for Units Used in Science

and Technology.

Users of this report are invited to submit comments that would be useful
in revising or adding to this material to the Director, ECAC, North Severn,

Annapolis, Maryland 21402-1187, Attention: XM.
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duct

elevated duct

evaporation duct

Floquet series

index of refraction, n

modified refractivity, M

perturbation expansion

GLOSSARY

a nonstandard condition in the troposphere whereby
a layer is formed, the refractivity gradient of
which is less than -157 N units/km, causing the
ray curvature of a radio wave to be greater than
the earth's curvature, with the result that the
wave is trapped in the layer and propagated beyond

“«

its normal range

a duct, the bottom of which is above the earth's

surface

a surface duct formed above a body of water when
evaporation causes a moist air layer to form under

a dry layer

a discrete sum of plane waves used as part of the
solution of a differential equation with periodic

boundary conditions

ratio of the phase velocity of an electromagnetic
wave in free space to the phase velocity in a

medium

defined by the equation M = N + (h/r)-10°

is the refractivity, h is the height, and r is the

, where N

earth's radius. M is defined in terms of N so

that its gradient is negative in a duct.

expansion of the rough-earth eigenvalues in terms
of the smooth-earth ones as a series in the
roughness height parameter, valid for small values

of the roughness height

Xi
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refractivity, N

refractivity profile

specular reflection

surface duct

GLOSSARY (Continued)

~ defined for convenience by the equation

(n-1)‘106, where n is the index of refraction

a plot of refractivity (either N or M) versus
height, where refractivity is the abscissa and

height is the ordinate

reflection that is the same type as that caused by
smooth surfaces and has the following

properties: it is directional (angle of incidence
equals the angle of reflection), its phase is
coherent, and its fluctuations have a relatively

small amplitude

a duct with a bottom that is on the earth's
surface and a modified refractivity gradient that
is negative from the earth's surface to the duct

top

Xii
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SECTION 1
INTRODUCTION
BACKGROUND

The prediction of electromagnetic field strengths at large distances from
a radiating antenna is important to designers and users of communications
systems. Such field strengths can be greatly influenced by the variation of
the modified atmospheric refractivity M with height z. If dM/dz is negative
over a range of z, the field strength can be enhanced at large distances from
the source. The layer of the atmosphere responsible for the enhancement is

called a duct.1'1

When the ground is the lower boundary of the ducting layer,
the duct is called a surface, or ground-based, duct. Otherwise, it is denoted
as an elevated duct. One common type of surface duct is found over the ocean

and is known as an evaporation duct.1'2

Numerical methods for predicting field strengths at large distances from a
1-3,1-4

1-5

radiating source in surface and elevated ducts have been documented.
These methods are based on the waveguide mode theory of wave propagation
and assume horizontal homogeneity of the tropospheric layers and a smooth

earth. Since the ducted modes are sensitive functions of the phase of plane

1'1Ker~r, D. E., "Propagation of Short Radio Waves," MIT Radiation Laboratory
Series, Vol. 13, McGraw Hill, New York, 1951.

1'2Rotheram, S., "Radiowave Propagation in the Evaporation Duct," The Marconi
Review, Vol. 37, No. 192, 1974, pp. 18-40.

1'3Marcus, S. W., "A Model to Calculate EM Fields in Tropospheric Duct
Environments at Frequencies through SHF," Radio Science, Vol. 17, No. 5,
1982, pp. 885-901.

1'uMarcus, S. W., and Stuart, W. D., A Model to Calculate EM Fields in
Tropospheric Duct Environments at Frequencies through SHF, ESD Technical
Report 81-102, AD-A107710, DoD ECAC, Annapolis, MD, September 1981,

1‘SBudden, K. G., The Wave Guide Mode Theory of Wave Propagation, Logos
Press, Ltd., London, 1961.

1-1




ECAC-TR-88-001 Section 1

wave spectral components, which can be greatly influenced by the form of the
reflecting ground, ground roughness is expected to have an important effect on

these modes.

A method for considering ground roughness in waveguide models of duct
propagation has been developed and utilized by Rotheram (Reference 1-2) and

Hitney.1'6

In the expression for the boundary conditions at the ground, this
method replaces the Fresnel reflection coefficient by the effective reflection
coefficient of a randomly rough surface as developed by Rice'~7 and Ament1'8

and verified by Beard. ™9

For the case of a horizontally polarized wave incident on a perfect
conductor, the Fresnel reflection coefficient is -1, while the effective

reflection coefficient is

R o= -1+ 1/2 (84)° (1-1)
where the Rayleigh factor A¢ is defined as

8¢ = 2Kk h sin g (1-2)
k is the free-space wave number, h is the root-mean-square (rms) bump height

of the roughness, and 6 is the grazing angle of the ray representing the

incident plane wave.

1'(’Hitney, H., et al., "Tropospheric Radio Propagation Assessment,"
Proceedings of the IEEE, Vol. 73, No. 2, 1985, pp. 265-283.

1"7Rice, S. 0., "Reflection of Electromagnetic Waves from Slightly Rough
Surfaces," The Theory of Electromagnetic Waves, M. Kline, ed., Interscience
Publishers, New York, NY, 1951, p. 351.

1'slment, W. D., "Toward a Theory of Reflection by a Rough Surface,"
Proceedings of the IRE, Vol. 41, No. 1, 1953, pp. 142-146.

1"9Beard, C. I., "Coherent and Incoherent Scattering of Microwaves from the
Ocean," IRE Transactions on Antennas and Propagation, Vol. AP-9, No. 5,
1961, pp. U470-U483,

1-2




ECAC-TR-88-001 Section 1

This effective coefficient considers only reflection in the specular
direction. It is an expression of the amount of energy scattered out of that
direction by the ground roughness and it contains the assumption of a standard
atmosphere with no ducts. This method of considering ground roughness when
ducts are present is popular 1n spite of its "semi-quantitativeness"
(Reference 1-6). One difficulty in justifying its use is based on the
dependency of waveguide modes upon continuous reflection from the waveguide
walls (Reference 1-5). Thus, a portion of the energy scattered out of the
specular direction at one reflection from the ground may be scattered back
into the original specular direction at a later reflection from the ground.
In addition, because of the nature of the duct, energy scattered out of the
specular direction may continue to propagate and may represent a mode in its
own right. Finally, the effective reflection coefficient was derived and
experimentally verified for real angles of incidence. Its carryover to the
complex eigenangles characteristic of the waveguide formulation of duct

propagation has not been validated.

OBJECTIVE

The objective of this analysis was to develop a first-degree
approximati~n for estimating the electromagnetic field strengths at large
distances rrom a radiating antenna that is within a surface duct situated over

a periodically rough ground.

APPROACH

As a first step toward developing a mathematical model for duct
propagation over a general rough earth, the problem considered herein is of a
perfectly conducting periodic ground with a small roughness amplitude below a
duct environment. The wave equation is developed and solved for the two-
dimensional case of a long, horizontal line source. The eigenvalues of the
solution are the roots of an infinite determinant that reduce to the smooth-

earth eigenvalues as the ground roughness approaches zero. Because it is

1-3




ECAC-TR-88-001 Section 1

infinite-dimensional, the determinant cannot be evaluated directly and the

eigenvalue must be calculated using other means.

Towards this, an expression for the ground reflection coefficient
analogous to Equation 1-1 is derived that accounts for the dispersive nature
of the ground-reflected field, as well as the multiple reflections
characteristic of waveguide modes. This effective reflection coefficient is
obtained for the case of horizontally polarized radio waves propagating over a
sinusoidally shaped, perfectly conducting ground within a surface duct

environment.

This reflection coefficient is then used in conjunction with the
fundamental waveguide mode equation to derive an eigenvalue perturbation
method wherein the eigenvalues for propagation over rough earth can be
obtained easily from the smooth-earth eigenvalues. A simple numerical
expression is obtained for this eigenvalue perturbation in terms of ground and
atmospheric reflection coefficients. Although the fundamental waveguide mode
equation approach is entirely equivalent to the formulation based on the wave
equat:ion,1'10 the waveguide mode formulation provides greater physical insight
into the waveguide phenomena. This waveguide mode formulation also leads to a
closed-form expression for the rate of modal attenuation due to roughness for

trapped modes in a surface duct formed by a bilinear refractivity profile,.

Another expression for the eigenvalues is then derived by expanding a
characteristic determinant about zero roughness amplitude to obtain an
"equivalent matrix" for propagation over rough earth which is identical in
form to the characteristic matrix for smooth-earth propagation. It is shown
that for the specular component of the reflection, the problem can be
considered in terms of an effective reflection coefficient that accounts for

rescattering of energy back into the specular direction. (The determination

1'mMar'cus, S. W., "Propagation in a Surface Duct Over a Two-Dimensional
Sinusoidal Earth," Radio Science, Vol. 23, No. 6, 1988, pp. 1039-1047.

1-4




ECAC-TR~88-001 Section 1

of field contributions due to the portion of energy scattered out of the
specular direction and not rescattered back into that direction will be

relegated to a future study.)

A perturbation technique is used to derive an expression for the
eigenvalues of the rough-earth case in terms of the smooth-earth eigenvalues
from the equivalent matrix. This eliminates the necessity of a separate,
time~-consuming search for the roots of the characterist.ic determinant of the
equivalent matrix for each set of roughness parameters. The accuracy of this
perturbation method is discussed, particularly as it relates to the

attenuation of trapped modes in surface ducts due to the roughness.

Numerical fieid strength predictions are presented with and without the
sinusoidal ground roughness, which shows that attenuation due to roughness can
be significant. A comparison is also made between predictions for which the
complete reflection coefficient is used and those feor which only scattering

out of the specular direction is considered.

ORGANIZATION OF THE DOCUMENT

In Section 2, the field equation for a horizontally polarized wave
propagating in a duct situated over a perfectly conducting, periodically rough
ground with small amplitude is derived. The solution to this equation is
given in the form of a Floquet series. The formal solution is dependent on
determining eigenvalues that are the roots of an infinite determinant. It
remains to develop practical means of determining the roots. Theoretical
concepts required to achieve this are derived in Section 3 and the actual

solution is obtained in Section 4.

In Section 3, a waveguide mode formulation is used to derive an effective
ground reflection coefficient when the roughness is sinusoidal. This
coefficient is used in the fundamental waveguide mode equation to determine
eigenvalues of the rough waveguide as a perturbation of the smooth-earth

values. The roughness is found to cause attenuation of trapped modes, and

1-5




ECAC-TR-88-001 Section 1

this attenuation is expressed in a simple manner. This expression reduces to
a closed form when the duct is approximated by a bilinear refractivity

profile.

For the same sinusoidal roughness, the specular contribution to the field
equations of Section 2 are derived in Section 4. This is done by deriving an
"equivalent zero mode matrix" from the infinite determinant using the
effective reflection coefficient. This accounts for scattering both out of
and into the specular direction. A computationally efficient means of
obtaining the relevant eigenvalues from the equivalent matrix as perturbations
of the smooth-earth ones are derived. It should be noted that this
perturbation expansion is not the one mentioned in the previous paragraph.

Once again, expressions for loss rates are obtained.

In Section 5, numerical results obtained directly from the equivalent
matrix and from the eigenvalue perturbation methods are compared. This is
done by first plotting roughness loss rates of individual trapped modes,
obtained from the two methods, and then plotting field strengths using the

four lowest order modes.

Section 6 contains a summary of the report.

1-6
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SECTION 2
GENERAL FORMULATION

GENERAL

References 1-3 and 1-4 contain the mathematical formulation for
describing an electromagnetic wave propagation in a tropospheric duct over a
smooth earth. This formulation will now be extended to include a periodically
rough boundary condition between the earth and the troposphere. Solutions to
the field equations will be obtained using a Floguet series. These solutions
will be dependent on determining the eigenvalues that are the roots of an
infinite determinant. Determination of the eigenvalues will be discussed in

Section 4.

PROPAGATION MEDIA AND ROUGH BOUNDARY

The modified index of refraction m{z) is defined as
m(z) = M(z) x 10"6 + 1 =n(z) + z/a (2-1)

where n(z) is the actual index of refraction; a is the radius of the earth in
the same units as the height z; and the z/a term compensates for earth

curvature, thereby enabling the use of Cartesian coordinates (Reference 1-1).

The modified refractivity profile (i.e., its variation with height) will
be approximated by a continuous piecewise linear profile with L sections (see
Figure 2-1). Each section will represent an atmospheric layer, or region, the
boundaries of which are parallel to a flat earth located at z = 235 = 0. The

interface between the i-th and i-th + 1 layer is located at z 2z

i
(1 <1i<L -1), with the layer i = 1 closest to the ground. The L-th layer

is unbounded in the positive z direction.
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ECAC-TR-88-001 Section 2

In each atmospheric layer,

(2-2)

IA
o

IA
r

2
m, (z) =1+ (z ~ Hi) tan o, 1

where Hi is the value of z at which mi(z) would equal unity and the slope

(tan a;)/2 of the m; versus z curve is assumed small.
It is assumed that the boundary between the atmosphere ana the infinitely
conductive ground is rough in a periodic manner with spatial period d. This

boundary can be described in terms of a Fourier series.

FIELD EQUATIONS

The source of a horizontally polarized wave can be considered to be a
linear density of magnetic dipoles P of infinite length that is uniformly
distributed along a line parallel to the y axis, oriented in the z direction,
and located at x = X', z = zg (see Figure 2-1). In a laterally homogeneous
medium, the fields due to such a source may be obtained from the z-directed

magnetic Hertz potential vector:

i - n(x,z2) 2 (2-3)
and

E = - juw My ¥ % i, B = vxvxi (2-4)
where w = 2nf, f is the frequency of the wave, ug is the permeability in

vacuum, and a sinusoidal time dependence is assumed. In the i-th layer of the

atmosphere, N(x,z) will satisfy the inhomogeneous Helmholtz equation:

2-3




ECAC~TR-88-001 Section 2

2 2 2 o
v II.l + K m, (z) moo= J(x,z)/(quO), 1 <1i<L (2-5)
where the source term is given by
J(x,2) = - jw My P §(x-x") é(z-zT) (2-6)

K = w(uoeo)1/2 is the wave number in free space, and eg is the permittivity in
vacuum.

The Hi satisfy the following boundary conditions which, using Equation
2-4, expresses the continuity across the region boundaries of the components

of E and H parallel to the boundaries:

for z = Z.s 1 <1 <L-1 (2-7)

all,/3z = 3I. /32
i i+

Since it is assumed that the ground conductivity is infinite, the boundary

condition at the ground is

6 xE = 0 for 2z = f£(x) (2-8)

where n is the unit outward normal to the surface and f(x) is a periodic
function that describes the earth's rough boundary. Using Equation 2-4, this

can be expressed as

2-U




ECAC-TR-88-001 Section 2
H1(x,z) = 0 for z = f(x) (2-9)

When z is small, H1(x,2) may be expanded in a Taylor series about z = 0 to

yield

M, (x,0) + (a1, (x,0)/32] f(x) » [32n1(x,0)/322] £(x)2/2 + ... 5

(2-10)

which, together with Equation 2-7, are the boundary conditions for the

problem.

PLANE WAVE SPECTRUM REPRESENTATION

For the smooth earth problem, a Fourier transform formalism may be used
to eliminate the horizontal x variable, thereby transforming the partial
differential equation into an ordinary differential equation (Reference
1-4). This formalism requires horizontal homogeneity for its implementation,
which is not present in the problem under consideration because of the
presence of ground roughness. (This is not to be confused with the
atmospheric layers, which are horizontally homogeneous and which thereby
permit the use of the Hertz potential formalism.) Therefore, an analogous
method will be used that is valid for the periodic type of boundary that is
assumed. This method will reduce to the Fourier transform formalism in the

zero roughness limit.
The source function J(x,z) may be written as a sum of its plane wave

spectral components. Since these components are continuously distributed.

this sum is expressed as an integral:

2-5
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J(x,2) = —— [ du el J(4,z2) (2-11)

(27) -=

where, using the definition of the Fourier transform and Equation 2-6,

J (p,2z) = ! [ dx e IHX J(x,2)
(2n) -=
= - juw ug P §(z ~ ZT) e-JuX (2-12)

Each spectral component J(u,z)ejux/(Zn) may be considered an independent
source contributing to the electric field. Let the solution of the problem
for this component of the source be given by ﬁi(u,x,z)ej“(x-x')/(2n) in the
i-th atmosphere layer; then, by superposition, the solution of the problem for

all the source components is

n.(x,z) = ! [ dp eIHxx") 5 (u,x,2) (2-13)
i i
(2m) -=

This equation differs from the familiar Fourier transform in that ﬁi is a

function of x as well as u and z.

3 t
Since the solution of the problem in the i-th layer is ni(u,x,z)eJu(X x')

when the source function is J(u,z)ejux, these may be substituted into Equation

2-5 for the L and J, respectively. Carrying out the differentiation of the
J

ed¥¥ factor and using Equation 2-12 then results in

2

(32/3x2 + 23 /azz)ﬁi + 2]ju aﬁi/ax + (kzmiz %)

= -pélz -2 (2-14)

T)

2-6
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3 - '
The eJ”(x %) factor no longer appears in Equation 2-14. The only source of
variation in the x direction is due to the periodic rough earth boundary
condition. Hence, the variation of @ with x is periodic and may be written in

the form:

fo(ux2) = g Fi(“)m,z) AL (2-15)

1

Substituting this form of the solution into Equation 2-14 results in

{szi(n)/dzg + [k2m.2

2 (n) jknx
i )] Fi } ©

St

- (u + xn

-p 6 (z-zT) (2-16)

This equation could have been obtained directly from Equation 2-5 by

assuming a solution of the form:

(n) iy + kD)X

m, = g F. ™"(u,z) e’ (2-17)

1 n 1

This equation is a Floquet series. It is a discrete sum of plane waves

because the boundary conditions are periodic.

Since the m; are not functions of x, the coefficients of exp(jxnx) in
Equation 2-16 are independent. Therefore, the sum of N terms are N

independent differential equations. The result is

2. (n), 2 2 2 (n)2 (n) _
d Fi /dz° + [k mi(z) - ] Fi = -snop §(z - zT), all n

(2-18)

2-1
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where
u(n) = u o+ kn (2-19)
From Equation 2-17, it is seen that the expression for ni is the same in
each atmospheric region except for the Fi(n) factor. Hence, the boundary

conditions in Equation 2-7 can be rewritten in the same form but with

IIi replaced by Fi(n):

F_(n) - F. (n)
i i+1
for z = 255 1 <1 <L (2-20)
(n) - (n)
aFi /3z = aFi+1 /3z

The expression of the boundary condition of Equation 2-10 is somewhat
more involved because of its dependence on x. Using Equation 2-17, this

boundary condition becomes

eI ™ [F (4,0) + aF1(n)(u,0)/az £(x)

(2-21)
2
+3F ) 0y fx)%2 e L) = 0
or, ignoring terms of order f‘(x)3 and higher,
jenx - (n) (n) je(m+n)x

z {e F,'0 7 (w,0) + 3F, 270 (4,0)/0z L p e

(2-22)

-3 Y(n)2F1(n)(u,O) : smejz(m+n)X} - 0

2-8
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where

Y(n)2 y k2m 2 _ u(n)2 (2-23)

and Equation 2-16 was used. Pp and s, are the coefficients of the Fourier
series of f(x) and f2(x), respectively, which are small for small roughness.
Equation 2-22 will be simplified by using the orthonormality of functions of

the form exp(j2wnx/d), expressed as:

d

[ ej2n(m-n)x/ddx -6 (2-211)

1
d 0 mn

~jxrx

Multiplying Equation 2-22 by e (where r is an integer) and

integrating the result over the period d yields

F1(r)(u,0) +z 3F1(n)(u,0)/az Pron

(2-25)

(n)2

y F (n)

; (u,0) Sep ° 0, all r

Therefore, to obtain a solution to the rough earth problem, Equation 2-18 must

be solved using the boundary conditions in Equations 2-20 and 2-25.

SOLUTIONS OF THE EQUATIONS

By substituting Equation 2-2, Equation 2-18 can be cast into the form of

Stokes' equation, the solution of which is

(n) - (n) (n) (n) (n), + F_ 6..68
Fi (u,z) = Ai K1(qi ) o+ Bi K2(qi ) P "iP noO,

all n (2-26)

2-9
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where

2
2/3 (n)
(n) (n) k 2 u
9 = 4 (z) = (ltanai ) [mi (z) - k2 ]

(2-27)

K1 and K2 are linear combinations of modified Hankel functions of order one-
third,2"!

Ai(n) and Bi(n) are functions of the parameter u and are found by invoking the

and P is the number of the layer containing the source current. The

boundary conditions. It is to be noted that, although u enters the

differential Equation 2-18 in the form u(n)2’ Ai(n) and Bi(n) cannot be
(n)

written simply as functions of since they must be found by solving a
linear system of equations that include the boundary condition of Equation

2-25, which contains all values of n.

The particular solution F_ of the inhomogeneous form of Equation 2-18

p
(i.e., n = 0) is given by either of the following (Reference 1-3):

Rp Ky(ap ) K,(p,)
F o= (2-28)

p
- Rp Ky (qp,) Ki(ap )
where
RP = P/qu'(z) (2-29)
QB = qp(o)(min{z,zT}), Qp, = qp(o)(max{z,zT}) (2-30)

2-4arvard Computational Laboratory, Tables of Modified Hankel Functions of
Order One-Third and of Their Derivatives, Harvard University Press,
Cambridge, MA, 1945,
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W is the constant Wronskian of Ky and K, defined by
- - ' - ' -

The primes in Equations 2-29 and 2-31' indicate differentiation with respect to

the argument. In particular,

(n)! (n)

(z)

k 2/
) 3

(z)/dz (TEEHET‘
i

q.

i dqi

tan oy (2-32)

where Equations 2-2 and 2-27 were used. It should be noted that the right
side of Equation 2-32 is independent of z, w, and the index n.

To solve for the field in the atmospheric layers, the coefficients Ai(n),
Bi(n) of the general solution in Equation 2-26 must be known. These will now
be determined by solving a set of simultaneous linear equations obtained by
substituting Equation 2-26 into the boundary condition of Equations 2-20 and
2-25. This will be accomplished here under the assumption that the source is
not in the atmospheric layer bordering the ground, i.e., P > 1. This
assumption removes the necessity of considering the inhomogeneous solution of
Equation 2-26 in the roughness boundary condition of Equation 2-25. It has no
limiting effect for any finite height of the source, since the lowest layer
can always be formally divided into two separate layers at a point below the

source height. Substituting Equation 2-26 into Equation 2-25 yields:

(r-n) (r-n) (r-n) (r-n) .
g (4, U, + By v, ] = 0, allr (2-33)
where
(r-n) _ ' (r-n) (r-n) (r-n)2 T
Un = Kylagtlag T ey Klaygt ) (g - d Sp)
) (2-34)
(r-n) _ _ -
Y = K2'q1’(q10(r n)) P, * K2(q10(r n)) (6,9 - 3 Y(r n)2 Sﬂ),
2-11
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(n) (n),.
Q; | = gz (2-35)
Finally, substituting Equation 2-26 into Equation 2-20 yields
(n) (n) (n) L(n) (n) (n) (n) (n) (n)
3 2i-1h1  * @y 2Bt 35 oiahier * 225 2142Bia 821
(2-36)
and
a (n) (n) a (n) g(n) - _(n) (n)
2i+1,2i-1"1 2i+1,2i"1 2i41,2i+1 i+
R ) B CY B
21+1,2i+27142 2i+1
1 <i<L-1
where
(n) . (n)
5 2i-1 = Kyag;7)
(n) _ (n)
31,21 = Kp(a3;7)
(n) - (n)
i 2101 = " Kylagg )
(2-38)
(n) _ (n)
i 2102 = " Kp(a5.7 )
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(n)

] ' n)
i41,2i-1 = Kq'lag)
(n) . ven ()
Bie1,2i = K@)
(n) _ [ (n) ' '
Bia1,2ie1 = " Ky'A5, 10950 7 9
(2-39)
(n) - ' (n) ' '
in,2ie2 5 - K'ai0 090 7 9
(n) _ .
By = Fplzezy) 65 (8,4 p = 8;p)
62?31 = d?P(z=zi)/dz 8.0 (6i*1 p - §:p) / qy'

n (2-40)
and when i = L - 1, the Ai+1(n) term is absent in order to satisfy the
radiation condition.

Equations 2-33, 2-36, and 2-37 may be written in matrix form as
an = B (2-41)

where a is a square matrix, and n and B are column vectors. To illustrate
their form, consider the case in which L = 2, P = 2, and n takes on the
values -1, 0, and 1. By grouping together Equations 2-33, 2-36, and 2-37 for

each value of n, a may be written
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—
(-1) (-1)
a4 a2

(-1 (-1) (-1
a5 a0 a3

RO NG NN GN)

and

g (1)
B (-1
B (1)
A (0)
B,(0)
B,(0)
a (1)
B,(1

1
B, (1)

(0)
U_4

(0)
a1

2L0)

a(O)
31

4(0)

(0)
Vo

(0)
212

(0)
4%

L(0)
32

(0)
V1

(0)
a5,

(0)
433

(1)
-2

(1)
-1

(1)
21

(1)
ag,

(1)
Voo

(1)
Vo1

(1)
212

(n
a3

(1
a3,

Section 2
(2-42)
(n
823
(1)
833
(2-43)
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where

8, = Fylz=z,)

- (2-44)

63 = [dF2(z=z1)/dz]/q1'

and
(n) _ (n) (n) _ (n)
aq, = UO T = Yy (2-45)

Equation 2-41 is solved for any desired elements »f n by using standard
methods for solving a system of linear equations. Thus, following the
definitions introduced for the smooth-earth case (Reference 1-3), the

coefficients Ai(n), Bi(n) may be written as ratios of determinants:

(n)

A s ey

(n)ll / ||°’|I’ B.(n> = HT Bi(n)H / HGH

1

(2-46)

where TAi(n) is the matrix obtained by replacing the column of a containing
the coefficient Ai(n) by the vector 8, and TBi(n) is the matrix obtained by
replacing the column of a containing the Bi(n) coefficient by the vector 8.

The ||<|| are functions of the source height z;, while ||a|| is not.

The above values of Ai(n), Bi(n) can be substituted into Equation 2-26 to

obtain the Fi("), which are used, in turn, to obtain [ from Equation 2-15.
This result is then used in Equation 2-13 to obtain the desired Hertz

)

potential. In the event that the ground were smooth, all the Fi(n would
reduce to O for all n # 0. Since only n = 0 would be included, Fi(o)(u, z)
would be obtained. Far from the source, the expression for the electric field

relative to its free space value is proportional to I and is precisely the
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same as that for the cylindrically symmetric smooth-earth case (Reference
1-3).

From Equations 2-13, 2-15, and 2-26,

1 @ s -
no(x,2) = — _£ du eJ:T z ed¥NX |lré2)l| K1(qi(n)) + ||T(gi|l Kg(qi(n))

(2-47)

The above infinite integral may be transformed into a contour integral by
closing the contour below, as shown in Figure 2-2. Since the poles u =
of the integrand are expected to lie in the lower half of the . plane, the
above integral can be meaningful for | x | » « only if x is taken to be

negative. The integrand can then be written as the sum of residues:

m(x,2) = (-2nj/2x) L Res (2-48)
where
Res = = Resm[e'Julxl ﬁi(u,x,z)] = A, Eexp(-gu|x|) (2-49)
-1
A = (2 Hallvau] ) (2-50)
m
E = & e'JKnlxl Emn (2-51)
m fi
(n) (n) (n) (n)
Emn : lleri I K1(qi )+ IiTBi I K2(qi )]“:“m (2-52)
2-16
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Equation 2-48, therefore, can be written

L . -jkn|x|
ni(x,z) = S XmeXp[ Jum|X|] e Emn
(2-53)

= -J g Eexpl-ju |x]]

SUMMARY

In Equation 2-42, the matrix of the characteristic determinant has been
divided into submatrixes, with those containing the aij(n) elements lying
along the diagonal. By using the definitions in Egquation 2~34, it is seen
that the roughness, characterized by the roughness amplitude e, appears only
in the rows containing the a11(n) and a12(n) terms. Since the index n labels
a Floquet mode, the elements of the off-diagonal submatrixes (i.e., the
elements Un(r-n), Vn(r-n)) are all of at least first-order in e and serve to

couple together the various Floquet mode contributions.

This is seen by observing that, if all elements not contained in the
diagonal submatrixes were zero, the Floquet modes may be "decoupled" from each
other. Each submatrix on the diagonal would then represent an independent
system of equations to determine the contribution of a Floguet mode of the
problem. Because of the form of the free vector g8 in Equatior 2-43, the free
vector for each submatrix would then be zero except for the O-th Floquet
mode. The corresponding field coefficients (i.e., Ai(”), Bi(n)), therefore,
would all be zero except for the O-th Floquet mode, thereby leading to the

smooth-earth solution

m(x,2) = -3 LA E exp[-jumlxl] (2-54)

2-18
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This does not imply that eigenvalues (or zeroes of ||a||) of only the O-
th order submatrix are present. Just as there are zeroes of the 0-th order
submatrix, there are zeroes of the other submatrixes representing other
Floquet modes. However, in the limit of zero roughness, only those modes
representing the eigenvalues of the O-th order submatrix are excited.
Referring to Equation 2-52, the rAi(n)and TBi(n) would be non-zero only for n
= 0 and only for roots u = uy of ||a|| corresponding to the roots of the 0O-th
order submatrix. Therefore, the sum in Equation 2-54 Is over only those

eigenvalues of the 0-th order submatrix.

The locations in the complex u-plane of eigenvalues u  of each Flequet
contribution are illustrated schematically in Figure 2-3 for the case of zero
roughness. Since the only difference in each submatrix is the index n of
u(n), the set of eigenvalues for each value of n would be translated from the
set of modes for n = O by an amount «n along the real axis. There is no way
of associating particular eigenvalues with specific values of n when the
roughness is large. When the roughness is non-zero but small, it is expected
that their location in the complex plane differs only slightly from the zero
roughness case so that identification between a given set of eigenvalues and a

particular Floquet series element can still be made.
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SECTION 3

EFFECTIVE REFLECTION COEFFICIENT AND WAVEGUIDE
MODE ATTENUATION

GENERAL

In the previous section, solutions to the electromagnetic field equations
for horizontally polarized waves propagating in a duct situated over a
perfectly conducting, rough earth were obtained. These solutions depend on

determining eigenvalues that are the roots of an infinite determinant.

In this section, a waveguide mode formulation is used to derive an
effective ground reflection coefficient. This reflection coefficient is used in
the fundamental waveguide mode equation to determine the eigenvalues of a
waveguide with a periodically rough boundary as a perturbation of the smooth
boundary values. The roughness is found to cause attenuation in trapped modes,
and this attenuation can be expressed in a simple manner. It reduces to a
closed-form expression when the duct is approximated by a bilinear refractivity
profile. This approach is entirely equivalent to that given in the last section

but provides greater physical insight into the waveguide phenomenon.

REFLECTION COEFFICIENTS

A horizontally homogeneous atmosphere is characterized by a continuous
piecewise linear refractivity profile with L sections (refer to Figure 3-1).
Using Equations 2-1 and 2-2, the modified refractivity of the i-th section of

the profile can be written as

Mi(z) = %[mi2(z) - 1] x 106 , 1 <1ic<L (3-1)

where mi(z) is the modified index of refraction. For sinusoidal roughness,

the ground surface satisfies

£(x) = ¢ sin (cx + ¢) (3-2)
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where « = 2n/d and d is the spatial period of the roughness.

Assume that the region below z = 0 (see Figure 3-1) is half-space
consisting of material with the same refraction index mg as the atmosphere at

(n) . (n)

z = 0, and that a plane wave characterized by exp(ju' 'x)exp(-jy  ’'z) is

incident on the 2z = 0 interface from below, where

2 u(n)2]% = k. sin o(™ (3-3)

u(n) S W+ xn, ko = mok, 9 (n) is the grazing angle, which may be complex,
and n is a positive or negative integer. Since an eJ¥C time dependence

is assumed, the wave is propagating in the negative x direction,

and Re(u(n)) > 0, Re(y(n)) > 0 . The total field in the region z < 0 then
(n) . (n) (n) (n)z)] ’

x) f[exp(-jy ’'z) + R exp(jy
where R(M) is the corresponding "upward-looking" reflection coefficient.

Will be characterized by exp(ju

Now consider the case of a plane wave incident on the rough surface from
above. The region above is now assumed to be homogeneous with refraction
index my, and the incident field is characterized by exp(ju(n)x)exp(jy(n)z).
Since the ground is periodic with wave number x, there will be waves reflected
in discrete directions (see Figure 3-2), so that the reflected field above the

ground will have the form:

(m) (m)

Z (—énm + ﬁnm) exp(ju' 'x)exp(-jy' '2) (3-4)

m

where & . is the Kronecker delta function, and the sum is over all positive
and negative m. The anm are elements of a "downward-looking" roughness
reflection matrix in which the element (n,m) represents the portion of the
field which, because of the roughness, is reflected into a wave characterized

by u(m) when the incident wave is characterized by u(n)_ By expanding the

3-3
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M—/—\_—/—\

Figure 3-2. Discrete spectrum of plane wave reflecticn
from sinusoidal rough surface.

field and the boundary in powers of the roughness amplitude e (Reference 3-1),
it can be shown that, when the horizontally polarized E vector is normal to

the direction of roughness variation,

R () = 1/2e2 41 (071 00y L ocedy (3-5)

ﬁn,nﬂ(e) = -je Y(n) ed® 40 (52) (3-6)

Ry nor(e) = =3 e (™ e84 oe?) (3-7)

5 2

n,n-m(e) = 0(e) (3-8)
3'1Fessenden, D. E., "Space Wave Field Produced by a Horizontal Electric

Dipole above a Perfectly Conducting Sinusoidal Ocean Surface," Third
International Conference on Antennas and Propagation ICAP 83, 1983.

3-U
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The upward- and downward-looking reflection coefficients are used in the

following subsections to obtain the modes of the atmospheric waveguide.

WAVEGUIDE MODE EQUATION

The modes of a smooth-earth atmospheric waveguide can be thought of as
discrete grazing angles 8ps OF equivalently discrete wave numbers M
characterizing plane waves at a given altitude within the waveguide. Choosing
that altitude as z = 0, each such plane wave will have the property that,
after a complete cycle of reflection from the upper boundary and reflection
from the lower boundary, its amplitude and phase at each value of x along
z = 0 will be identical to those of the original wave. This may be expressed

as

R(O)(um) Ru) -1 = 0 (3-9)

where R(O) is the upward-looking reflection coefficient and ﬁ is the downward-
looking reflection coefficient. For a horizontally polarized wave propagating

over perfectly conducting ground,

R(u) = -1, all y (3-10)
so that the u, satisfy

R(O)(um) = - (3-11)

Although Equation 3-9 was derived on the basis of a single cycle of
reflections from the upper and lower waveguide walls, the result would be

identical if any number of cycles were used.

3-5
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If a sinusoidal roughness is now considered, the situation is more
complex, since a wave incident on the rough surface from above is reflected
into an infinite set of discrete directions (see Figure 3-2). Limiting the
discussion to those wave components within the propagation medium
characterized by the wave number u(O)’ Equation 3-9 can be generalized to a
rough-surface waveguide as

(0)

st ,6) = ROVRGLD 5 -1 < o (3-12)

where § is a small quantity characterizing the roughness,
AL SN TS CLIPS (3-13)

is an effective reflection coefficient, and AR is the reflection coefficient

(0)

correction due to roughness for waves characterized by u .

Some thought indicates that a component of the ground-reflected wave that
is not in the specular direction, because of the assumed waveguide nature of
the propagating medium, will be reflected back to the ground from the upper
wall of the guide (see Figure 3-3). Upon re-reflection from the ground,
another discrete spectrum of waves is obtained, including a component
characterized by the original v = p(o) wave number. The same process can

occur after any number of ground reflections.

Referring to Equations 3-5 through 3-8, note that after a single
reflection from the ground, the reflection coefficient correction for the u(O)
component of the reflected field is ﬁ0,0' This corresponds to wave BHE in
Figure 3-3. After an additional cycle, there is a reflection coefficient
correction contribution in the u(O) direction due to a wave that was first
reflected into a u(m) direction and then reflected back intc a U(O) direction
(such as BGCJ in Figure 3-3). This contribution is

= (m) = . = = (m)
RO,m [R Rm,o] = R R R,

O,m m,0

3-6
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If the reflection coefficient correction contributions are to be of order
52, it is seen from Equations 3-6 through 3-8 that m can take on only the

values of *1. With this limitation, the contribution to AR after an

(0)

additional cycle would occur as a result of the original u wave being

scattered into a u(m) wave after the first reflection, scattered specularly
into a u(m) wave after the second reflection, and scattered back into a u(O)
wave after the third reflection. This contribution to the reflection
coefficient correction is

(m)

(=1 + R )] rr{Mz = R R o (-R™2y L oSy, m o=

RO m (R ,m m,O] O,m m,0O

’

This corresponds to BGCIDK in the figure. In general, after N + 1 cycles, the

reflection coefficient correction contribution is

= = (m)\N _
RO,m Rm,O (-R Y, m = %1,

Summing all these contributions form = -1 andm = 1 yields
= = = = (-,i 3 = p{1)yi
BRo= Ry o - Ry 1 Ry0 % (-R™ 07 = Ry 4 Ry g % (-R*°7)

(3-14)

where the sums are over all integers i 2 1. Equation 3-14 can be considered
an expansion of 6R for small values of IR('1)I and |R(1)[. as R(=1) ang (V)
increase in magnitude, A§ contains more of an interaction between the ground
and the propagation medium. In such a case, use of §0,0 alone (which, like Aﬁ
in Equation 3-1, describes only the energy scattered out of the specular

direction) is insufficient to compute AR,

Substituting Equations 3-5 through 3-7 in Equation 3-14 yields

[0 -1y rUMY oy (y Y 2

+ ¥
rROC1) 4 R

J:'m

(3-15)

3-8
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where the identity z (-R)' = -R/(1+R) was used. From Equation 3-15 it is
- i
clear that AR is proportional to e2. For future convenience, § will be
2

defined as ¢ ¢ The relationships in Equations 3-13 and 3-14 may be used in

Equations 3-12 to obtain the eigenvalues My -

EIGENVALUE PERTURBATIONS

A separate numerical search for the eigenvalues, or roots, of Equation
3-12 is required for each value of ¢ or d. This eigenvalue search is
extremely time consuming. A method is now described that, to the same degree
of accuracy, permits the rapid calculation of the uy(e) for any set of (e,d),

once the um(O) have been found.

For a small roughness amplitude ¢, the eigenvalues can be expanded as

um(ﬁ) = um(O) + Aum (3-16)

where

Bu. = dum(O)/dG s (3-17)

is the amount by which the m-th eigenvalue is changed as a result of the
roughness through the process of scattering energy out of and back into the

specular direction. Now,

ds = Sudu + 5,ds (3-18)

3-9
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where the subscripts u and § indicate partial differentiation, and the partial

derivatives may be evaluated at ¢ = um(O), § = 0. Choosing du and dsé
such that u remains an eigenvalue requires that dS = 0. Therefore,
dum(O)/dS = -sd/su (3-19)

Substituting this in Equation 3-17 and using Equation 3-12 results in
bu_ = -oR(u_(0),8) ¢ R Oy (0)) (3-20)
m m "’ u m
where Equations 3-10 and 3-11 were used.

Numerical calculations indicate that for the B representing the least

attenuated modes of propagation,

/g (3-21)
and that
R G, Ry e (3-22)
when
2.3 -
/kg > (1= (k)12 = 10 (3-23)

From Equation 3-15, this leads to

= 0y , (-1) _ Y(1)) 2 (3-24)

R = 3 v (v 3-
Using Equation 3-21 it may be shown that for «/ky not very large,
Lk erky) (32 = /i) ) (3-25)
Y 0 0 0
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Then, using Equation 3-3,

AR = 3[(2 - a/d)E - § (2 + asd)¥) [sin 0@ k2 (/) ie?)
(3-26)

where » = 2n/ky. The first factor in brackets on the right-hand side is of
order unity for all A/d £ 1. The second factor represents the small quantity
in which R is being expanded. Comparing it with the square of the Rayleigh

€9 in the latter is replaced here

factor of Equation 3-1, it is seen that sin
1

by sin & times (A/d)2. For most cases of interest, the Rayleigh factor will

be smaller. It should not be surprising, then, if common situations arise in

which additional terms in the expansion of Equation 3-16 are required.

Using Equation 3-26 in Equation 3-20 yields

by = =2[(2 - v/d)E - §(2 + a/d)¥)[sin e(o)/Ru(°>] [koz(x/d)£] 6

m

(3-27)

TRAPPED MODES

0)

The ratio sin o( /Ru(o) in Equation 3-27 depends on the eigenvalue wup.

For trapped modes, which are identified by Marcus and Stuart (Reference 1-4),

0y . o (3-28)

Im(sin 8

This ratio can be obtained from the phase integral approximation (Reference

1-5) according to which

r(0) . il - dm) (3-29)

where

£ 1
b= ow(e) = 2k [ (m(2)° - )iz (3-30)
0
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C = m, coso (3-31)
and z = £(8) is the root of m(z)2 -C® : 0 and is the height at which a
ray with grazing angle 8 at z = 0 will experience a turning point. From

Equation 3-11, the eigenvalues @ = 8 satisfy

v(e) = (2m + 3/2)n, m = integer (3-32)
From Equation 3-3, Mp = kg cosé so that
RU(O) =k, a8 /3c0s8 = - ko! cots 7% /3sine (3-33)

which should be evaluated at 6 = 8. Equations 3-29 through 3-33 can be

evaiuated numerically for any desired surface duct profile, or can be
evaluated in closed form for the piecewise linear, two-layer profile

illustrated in Figure 3-1. For this case, and for all m,
, (0) .
sin 8 /R = -1 tan a (3-34)

thereby providing a closed form expression for Ay, in Equation 3-27:

Buy = 3 [(2+ A/d)E j(2 - x/d)?] tan a k02 (x/d)%s

(3-35)
From Equations 3-28 through 3-33, it can be shown that for trapped modes,
Re(Ru(O)) = 0 (3-36)
Using Equations 3-28 and 3-36 in Equation 3-27 yields

Im(ay ) = 2 (2 - va)E [y sin0l® Ru(°)1 [koz(x/d)%] 5

d > x/2, trapped modes (3-37)
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PROPAGATION LOSS RATE

The contribution of each waveguide mode to the total field has a
dependence on the distance |x| given by exp[-ju,(e) |x|], where |x| can
increase to large values (References 1-3 and 1-4). If Au, has a non-zero
imaginary part, the exponential decay factor of exp[-j Bup |x|] can produce a
large effect on the field that varies with distance. The change L In
propagation loss for the m-th mode over that which is experienced over smooth

earth is

L, = -20 log10{exp[1m(Aum)]x}]} = -8.68589 Im(au ) [x| (dB)  (3-38)

It is convenient to define the rate of loss of the m-th mode due to roughness

as

Lom ° Lm/lxl = -8.68589 Im(au )  (dB/km) (3-39)

where Ay is in units of k=1,
The fact that 8y, is proportional to 52 permits a definition of roughness
loss per unit distance per square of roughness amplitude:

L = 107 L. /e (3-40)

where ¢ is in meters.

Using Equation 3-37 in Equations 3-39 and 3-40 yields
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2 172 ¢

L = 8.68589 (107°) k Zsin 6, [A/d (2 - a/d)] ,szRu(O)l,

sm 0

(dB/km/mz), d > A/2, trapped modes (3-41)

and using Equation 3-34 in Equation 3-41 yields

6 2

L ~ 1.0857 (10~

Sm )y

1 1
) |tan a Iko2 (x/d)? (2 - a/d)? (dB/km/m

1

d > A/2, trapped modes, bilinear profile (3-42)

where X and d are in the same units, and the ko, u, and tan ay are in units of
km~ 1. Lg, @s given in Equation 3-42 is always positive, thereby indicating
the detrimental effect that roughness has on the ability of the trapped modes

to propagate unattenuated.

It is interesting to note that if the only contribution to the reflection
coefficient correction came from energy scattered out of the specular
direction, then Aﬁ = a0,0' Comparing Equations 3-5 and 3-24, this is
tantamount to replacing -y(1) by 7(1) in Equation 3-24. Since only the real
part of Aﬁ enters the expression of LSm for trapped modes, Equation 3-41 would
be obtained for this case as well. It should be emphasized that Lg, is
identical for the partial scattering and the full scattering cases only when
the modes are fully trapped. Furthermore, though the loss rate with distance
may be the same for these modes, the roughness effect on the fields would be

different since AR also affects the phase of exp(-jbun|x|{).




v
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To demonstrate the effect of roughness on the modes of propagation, a
plot is provided in Figure 3-4 of Loy as a function of the roughness spatial
period d for the two trapped modes obtained using the surface duct
refractivity provided in Figure 3-1. Lg, in these plots was calculated from

Equation 3-42 using a frequency of 6.814 GHz, corresponding to » = 4.4 cm.

For these trapped modes, LSm exhibits relatively large values in the
vicinity of d = A. The maximum value occurs at the value of x at which

dLSm/dx = 0, which from Equation 3-42, is seen to occur at d = X.
SUMMARY

A method for obtaining the effect of sinusoidal roughness with a small
amplitude on the waveguide eigenvalues of horizontally polarized radio waves
propagating in a horizontally homogeneous atmosphere has been described. The
method is based on the fundamental waveguide mode equation and utilizes an
eigenvalue perturbation scheme. The eigenvalue perturbations, as well as
roughness loss rates, are expressed in terms of reflection coefficients that

consider energy scattered out of as well as into the specular direction.

A closed-form expression is provided for the roughness attenuation rate
of trapped modes in an atmosphere approximated by a bilinear refractivity
profile. This attenuation rate was found to be largest when the propagation

wave length and the surface roughness spatial period are close in value.




? _

. o= ‘1 - aan3dtg Jo
Eosmgz Y ‘L-¢

) sopow paddeaq JoJ Y/p JO uorjoung e SE 3qed SsOT ssauydnoy ‘§-¢ 2dandry
=
o
-
)
Q
Q
N
\ 97"
. : . . —.
000! ool (o] [ .
TYyvvy v % ¥ _j—‘_—l— T —_____- 1 1 “—_—a__— ¥ _-ad-_-w_ |
o
(Noj
: -
. (zw/wy/gp) ™
4 wSq
— 00!
4
> .
<
@
%
o
0
O
<C
(&
m




ECAC~TR-88-001 Section U

SECTION 4
SOLUTION FOR SINUSOIDAL ROUGHNESS

GENERAL

The general approach to the solution of the basic equa.:ons involving
electromagnetic wave propagation in a surface duct over a sinusoidal rough
earth was presented in Section 2. This consisted of a waveguide mode method
formulated for determining the field strength over a slightly rough earth.
The eigenvalues of the waveguide formulation were found as roots of an
infinite determinant that reduces to the smooth-earth eigenvalues as the

ground roughness ¢ approaches zero.

In this section the matrix is written in a form such that, when the
roughness ¢ approaches zero, the determinant becomes a product of
subdeterminants, each representing a Floquet mode of propagation. As in the
last section, the roughness is assumed to be sinusoidal, given by

Equation 3-2.

For the case of L = 2, and including for demonstration purposes only the

central 9 x 9 elements,
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— _—
T
g e e
SR
o = (4=1)
SRR
oy
UGN
where - -
az_l(n) _ Ki(q11(n))’a3i(n) . Ki'(qﬂ(n))’i -1, 2
(4-2)
223 L ey, ™M), 2™ = Ky(ay,Mayrvay all

.2
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(n)

a M= K™ - B MR

e, ™ = (c%/8) k(q, (M) ¥(M2 20,

e, ™ L(c%8) Kk (q, (M) (M2 200, (4-3)
di(”) = Je Ki'(q10(n)) q,' eJ?,

bi(”> = e Ki'(q1o(n)) a, e 1 = 1, 25 a1,

The K4(q) and K5(q) are linear combinations of modified Hankel functions of

order one-third (Reference 2-1).

qlJ(n) = ql(n)(zj) - (k/ltan al|)2/3[m12(zj) _ u(n)Z/kZ]
(4-4)
u(n) = u + «kn (4-5)
Y(n)2 - k2 m02 - u(n)2 (u_e)

zJ is the upper boundary of the j-th atmospheric layer, 29 = 0, my = m1(0),
and primes denote differentiation with respect to the argument. The

superscript (n) denotes the index of a Floquet mode.

It has been shown that in practical problems, the "power sum" expression

m(x,z5e) = {% lxm exp[—jum(e)|x|] z e'JKnlxl Emn|2}% (4-7)
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often provides more accurate predictions of the duct field relative to free

space (Reference 1-3).

EQUIVALENT ZERO MODE MATRIX

When ¢ approaches 0, the determinant ||a}| reduces to a product of
subdeterminants, each representing a Floquet mode of the propagation, and Enn
= 0 except for n = 0. The discussion below concentrates on the effect of the
roughness on the O-th Floquet series element and on the contribution of that
element to the total field. That is, when the roughness is small, the um(e)
may then be used to obtain the Emo[um(e),z,zT;e] and Am[um(e);e] so that the n

= 0 contribution to ni(x,z;e) may be computed.

The u, are the roots of ||a]|. Referring to the infinite order matrix

form, Equations 4-1 and 4-3 may be used to write, to second order in g,

||0|| = [g D(n)(s)] {1 -6 z [(Da(n)/D(n))(Da(n+1)/D(n+1))]}
" (4-8)
where § = 1¢°, and
(n) (n)
ay (e)a,t (e)
(n)
D*"(e) = (n) (n) (n) (4-9)
321 322 323
(n) (n) (n)
El %32 233
(n) (n)
°11 EP;
(n) - (n) (n) (n) i
s © | % 45 253 (4-10)
(n) {n) (n)
31 %32 233

4-u
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(n)

_ . (n)
b1y = Ky'(ayg

(n)

)q1'y b12(n) = K2'(q10 )q1' ()4—11)

and the product and sum in Equation 4-8 are over all n. Using the first

expression in Equation 4-3,

g = (g™ o] [1-8 ™2 (4-12)

n

so that Equation 4-8 may be written

llaf] = s (4-13)
where
st 1 - s (M2 i) L Da(”) [Da(”*’)/o(“*’)]}, n>o
(4-14)
SO L 125 (2] 0y (O [p (50D Ly (<D p(-) ),

(4-15)

4-5
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L e R R A Da(“)[na(“'1)/n(“'1)]}, n <o
(4-16)

and all the p{™) determinants are evaluated at ¢ = 0. Equations 4-14 through

4-16 are valid as long as the denominators are finite.

The eigenvalues corresponding to the n = 0 Floquet mode, therefore, will
be the roots u = um(e) of S(O). But determination of these roots is
equivalent to determining the roots of the determinant of a matrix similar in
form to that of Equation 4-9 with the substitution

a,; » K" - (Y K/qQ") (4-17)

7= fe 3o,V L p (1)p(-D -1 (4-18)

where multiplication by the constant[1 - § y(0)21'1 was permitted under the
assumption that the source is not located in the lowest atmospheric layer.

The matrix in Equation 4-9 with the substitution in Equation 4-17 will be
referred to as the "equivalent matrix" for propagation over rough earth and is
identical in form to the characteristic matrix for smooth-earth propagation
(Reference 1-3). Y can then be interpreted as the effective propagation

constant in the ground, and the effective reflection coefficient is given by

|

(Y(O) - ;)/(Y(O) +5y) = -1+ AR (4-19)

4-6
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where

. p (=1 ,p0-M

a

7 (0) (5 (1M "

AR = 2 j & vy ] (4-20)

Since Equation 4-19 represents an expansion of ﬁ about ﬁ = -1, it is expected

to be valid when Aﬁ is small relative to unity.

The equivalent matrix can be used to determine all field contributions of
the 0-th order Floquet mode. It cannot be used to obtain the contributions
from other Floquet modes that correspond to the O-th mode eigenvalues; this

will remain a goal of future study.

Using a rough-earth version of the fundamental waveguide mode equation,

it has been shown that

(n)

where R is the reflection coefficient "looking upward" from below the rough
surface. That is, if the region below 2 = 0 (see Figure 4-1) is replaced by
material with the same refraction index mg as the atmosphere z = 0, and if a

(n)

plane wave characterized by exp( ju x)exp(—jy(n))is incident on the z = 0
interface from below, then the total field in the region z < 0 will be given
by exp(Ju(n)x) [eXp(-Jv(")z) + 7t

be shown to be identical by noting that

exp(Jy(n)z)]. Equations 4-20 and 4-21 can

4-7
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. (n) _(n) (n)
- Jv D*7(0) - D
r(0) . a (4-22)

- ] M p(M gy, Da(n)

which can be obtained by solving a linear system of equations expressing the
continuity of the Hertz potential and its normal derivative at the ground and

at each atmospheric layer interface.
The reflection coefficient correction in Equation U4-21 includes energy

scattered out of, as well as into, the specular direction. If only energy

scattered out of the specular direction were included, then

AR = Y(O) (Y(-1) + Y(1)) 62/2 (partial scattering) (4-23)

EIGENVALUE PERTURBATIONS AND PROPAGATION LOSS RATES

If the above equivalent matrix is used, a separate eigenvalue search is
required for each value of ¢ or d. This eigenvalue search is extremely time-
consuming. An eigenvalue perturbation method, therefore, will be utilized
that, to the same degree of accuracy, will permit the rapid calculation of the

up(e) for any set of (e,d), once the u (0) has been found.
For a small roughness amplitude ¢, the eigenvalues of u = up(e),

corresponding to the O-th order Floquet mode, satisfy S(O)(u,é) = 0 and may be

expanded as

pu (&) =

o up(0) + Bup (4-24)

where (Reference 1-10)

4-8
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- (0) ,4(0)
Aum z --S6 /Su 3
Using Equation 4-15 with
p{%(0) : 0 wheny - u(0)

in Equation 4-25 yields

- P
bu = J(um,K) €

where

Jlu,x) = [Da

Each of the determinants in this equation is evaluated at u

Section 4

(4-25)

(4-26)

(4-27)

), (4 DU(O)]] [Da(-1)/D(_1) + 03(1)/0(1)] (4-28)

um(O), § = ¢ = 0.

The uy(e) resulting from the use of Equation 4-27 with Equation 4-24 can then

be used in the equivalent matrix to obtain Am and EmO in Equation 2-53. Thus,

once the smooth-earth eigenvalues have been found, the field contributions of

the 0-th Floquet mode can be determined for any combination of ¢ and d without

performing a time-consuming numerical search for the new eigenvalues.

The

accuracy of the eigenvalues obtained using this perturbation method is the

same as that obtained using an eigenvalue searc1 of the determinant of the

equivalent matrix, since this determinant is itself the result of an expansion

in the same small quantity.

Using the fundamental waveguide mode equation, it was shown that

(Reference 1-10)

4-9
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Ay - AR / R(O) (4-29)
m H

where the subscript u indicates partial differentiation with respect to u.

From Equations 4-22 and 4-26, it may be seen that, when y = up(0),
R‘(f’) - -2 349 fo”(o) N (4-30)

The consistency of Equations 4-29 and 4-27 is demonstrated by substituting
Equations 4-20 and 4-30 into Equation 4-29. Thus, the eigenvalue perturbation
form of Equation U-27 considers scattering both out of and into the specular
direction. If only scattering out of the specular direction were to be

considered, Equations 4-23 and 4-30 may be used in Equation 4-29 to yield

Bup, = ] ID;O)(O) / 4050)] (Y(-l) + Y(1)] e (partial scattering)

(4-31)

The rate of loss due to roughness of the m-th mode along the propagation

direction is defined by

LRm = -8.68589 Im(Aum) (dB/km) (4-32)

2 permits

where Ay is in units of km™'. The fact that bu, is proportional to e
a definition of roughness loss per unit distance per square roughness

amplitude:




ECAC-TR-88-001 Section U
L = 10700 /2 - -8.68589 (10°°) Im[J(n_,<)] (dB/km/m?)
Sm Rm * m’
(4-33)

where e is in meters.

Equations 4-32 and 4-33 can also be used when the um(e) are found
directly from a search using the determinant of the equivalent matrix. In

that case, Aum = um(e) - um(o) is used in Equation 4-32, leading to

Lg, = -8.68589 (107°) Imlu (e) - u (0)1/e? (dB/kn/m)

(4-34)

Lgp is particularly significant for trapped modes in a surface duct. For
propagation over smooth earth, these modes experience little or no attenuation
in the propagation direction, which accounts for the field enhancement within
the duct (Reference 1-4). For trapped modes within a surface duct

characterized by a bilinear refractivity profile,

6

Lgy, ~ 10857 (107°) ftan o] k2 (va)? (2 - /) (@B/k/m®), d > 2/2

Sm

(4-35)

where A and d are in the same units, and kg = mok and tan ay are in units
of km~!. Lgm» as given in Equation 4-35, is always positive. This
demonstrates that the roughness causes attenuation of the trapped modes.
Equation 4-35 is valid for both the complete scattering (see Equation 4-27)

and the partial scattering (see Equation 4-31) situations.

b-11/74-12
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SECTION 5
DISCUSSION AND RESULTS

To illustrate the effects of the roughness on the modes of propagation,
plots are provided in Figure 5-1 of Lg as a function of the roughness spatial
period d for the two trapped modes that are obtained when the surface duct
refractivity profile of Figure 5-2 is used. Lgy, in these plots is calculated by
two methods: the eigenvalue perturbation method using Equation U4-33 and the
equivalent determinant method using Equation 4-34. A frequency of 6.814 GHz is
used, corresponding to x = 4.4 cm. This figure shows that the eigenvalue
perturbation results for the two trapped modes are identical, consistent with
the usage of Equation 4-35, which is independent of the index m and which was
originally derived from eigenvalue perturbation results. Indeed, the eigenvalue
perturbation plot for the trapped modes is virtually identical with the closed

form prediction of Equation 4-35.

It is emphasized that the trapped mode results shown in Figure 5-1 are
unique to a surface duct. Values of Lg, for trapped modes in an elevated duct
were found to be several orders of magnitude lower, as would be expected since
the ground roughness would not influence trapped mode propagation in an elevated

duct.

A discrepancy is obvious in Figure 5-1 between the eigenvalue perturbation
and the equivalent matrix results for the trapped modes as d/x decreases. This
corresponds to an increase in the size of the expansion parameter Aﬁ, as noted
in the discussion following Equation 4-20. Although the two methods provide the
same degree of accuracy, both are valid only for small values of the expansion
parameter. Beyond this region of validity, there is no reason to expect the
results of each method to be similar. The closeness of Aﬁ to zero, or the
closeness of ﬁ to -1, thus provides an indication of the accuracy of the
expansion. Figure 5-3 illustrates the complex value of § for the lowest order

trapped mode, for € = 0.1 m and various values of d/x. The correlation between
the distance of the R values from -1 and the divergence of the results of the

two computational methods is obvious.
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Figure 5-3. The effective reflection coefficient of sinusoidal
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ground for amplitude ¢ = 0.1 m, frequency = 6.814 GHz
for different values of d/i.
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Predictions of the field relative to free space, using the four lowest
order modes, are shown in Figure 5-4 for a 6.814 GHz radio wave propagating
within the duct defined by the refractivity profile of Figure 5-2. They are
illustrated as a function of observer height at a distance 66.7 km from the
source for propagation over smooth earth and for three methods of computation
for propagation over the sinusoidal rough earth: (1) the equivalent matrix
method using the entire reflection coefficient correction, (2) the eigenvalue
perturbation method using the entire reflection coefficient correction (i.e.,
Equation 4-27), and (3) the eigenvalue perturbation method using the partial
reflection coefficient (i.e., using Equation 4-31). The rough earth is

characterized by ¢ = 0.1 m.

For the predictions in Figure 5-4a, the source height zr = 29 m and
d = 10 m, while in Figure 5-4b, d = 1 m with the same source height. In both
figures, there is good agreement between the predictions obtained using
methods (1) and (2). The discrepancy between these predictions and the
partial reflection predictions is greater for the smaller value of d. Since
the source is well above the duct, only the leaky mode contributes to the
field. This mode is the third of the lowest order modes, thereby explaining

the three peaks in the plots.

In Figure 5-4c, 2q = 5mand d = 10 m. Since the entire contribution is
now due to trapped modes that are the two lowest order modes, only two peaks
are apparent in the plots. Here, there does not appear to be good agreement
between any of the rough-earth results. Figure 5-4d is the comparison of the
power sum results (Equation 4-7). Agreement in this figure, as well as the
fact that the Lg, in Figure 5-1 for each method is virtually identical,
indicates that a major source of the problem is due to the relative phase of
each mode. When the modal contributions are added without considering their
phase, the agreement between the two complete reflection coefficient results

improves except near the null.

5-5




ECAC-TR-88-001 : ’ Section 5§
10 X ~J
VECTOR SUM x
€ =.lm x
d zIi10m X
8 2y:z29m l‘ /
NORMAL ~ -T04B e
€ —
-
S s}
¢
@ [ ——— SMOOTH EARTH —~
w { ROUGH EARTH, EIGNVALUE PERTURBATION METHOD x \
X 4L« o ¢ eROUGHEARTH, EQUIMALENT MATRIX METHOD > /
:ﬂn 2 xx x x ROUGHEARTH,PARTIAL SCATTERING
o -
2 —
{ N
4
——
[} A L 1
~45 -40 -35 30 -2% -20 -15 -10 -5 0
FIELD RELATIVE TO FREE SPACE (d8)
(a)
0 VECTOR SUM T x \
° X
¢z Im X
d=1Im x
sl Zy=29m x
-~ - L)
_ NORMAL ~ -70d8 " x* -
3
T 6t
o
at
Xz
[- 4
¥
& 4
w
[
-]
43
0
-45 -40 -35 ~30 -25 -20 -15 -0 -8 [}

-

FIELD RELATIVE TO FREE SPACE (¢8)
(o)
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SECTION 6
SUMMARY

A method has been described for obtaining the effect of small sinusoidal
roughness on horizontally pelarized waves that are propagating in a surface
duct situated over large distances in a horizontally homogeneous atmosphere.
The method includes energy scattered out of, as well as into, the specular

direction of modes of the corresponding smooth-earth waveguide.

It was shown that an eigenvalue perturbation scheme is as accurate as
directly obtaining the eigenvalues from the equivalent matrix but requires
much less computation time. The relationship between the two methods has been
detailed, and the eigenvalue perturbations, as well as roughness loss rates,
have been shown to be consistent with results obtained using a rough-earth

form of the fundamental waveguide mode equation.

The methods documented in this report are a first step toward developing
a mathematical model of propagation under the given conditions. They can be
considered a research model applicable to a limited set of circumstances.

Further work is needed to extend the model and make it more widely applicable.
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